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Abstract
The behaviour of a solution of equilibrium polymers (or living polymers)
between two surfaces is studied using a Bethe–Guggenheim lattice model
for molecules with orientation-dependent interactions. The average monomer
concentration, the average length of the chains and the interaction between
the surfaces are calculated as a function of the separation distance between the
surfaces. When the gap is in full equilibrium with a homogeneous bulk solution,
the equilibrium polymers cause a depletion attraction, which becomes stronger
with increasing bulk monomer concentration. The range of the interaction
passes through a maximum as a function of the concentration. In dilute solutions
the range of the interaction increases and the strength decreases with increasing
bonding energy, while above the overlap concentration the bonding energy
is irrelevant. For restricted equilibrium between the gap and the bulk, when
the amount of polymer in the gap is determined by the flow of fluid out of
the gap upon compression, the interaction becomes repulsive. This repulsion
becomes stronger with increasing concentration and depends only very weakly
on the bonding energy. Two limiting cases for the fluid flow were considered:
(i) perfect-slip conditions at the surfaces, resulting in a constant monomer
concentration in the gap and (ii) no-slip conditions at the surfaces, resulting
in a parabolic flow profile of solution out of the gap.

1. Introduction

It is well known that nonadsorbing polymers can cause phase separation in colloidal
suspensions [1–11]. The origin of this effect, termed depletion flocculation, is the decrease
in conformational entropy that a chain suffers when it is confined between two particles that
are not too far apart. For nonadsorbing polymers this entropy loss is not compensated by an
adsorption energy, so that polymers tend to avoid the region between the two particles. As a
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result, the osmotic pressure between the particles is lower than in the bulk and the particles are
pushed together. If this effect is strong enough, flocculation or phase separation is observed.

Several theoretical models have been proposed to describe the effect of nonadsorbing
polymers on colloidal interactions. The first theoretical treatment was given by Asakura and
Oosawa [1, 2]. These authors treated the polymer coils as hard spheres for the colloidal
particles, and as penetrable spheres for other polymer coils. Each particle is then surrounded
by a depletion zone with a thickness equal to the radius of gyration of the polymers. Overlap of
the depletion zones is favourable,because this results in an increase of the total volume available
for the polymers. This is the driving force for depletion phase separation. Joanny et al [4]
used scaling arguments and mean-field calculations to extend the theory of polymer depletion
to semi-dilute polymer solutions. In this case the thickness of the depletion layer corresponds
to the correlation length ξ of the polymer solution, which is a decreasing function of the
polymer concentration [3, 6, 12]. Scheutjens and Fleer [6–8] developed a self-consistent-field
lattice theory, which proved to be successful in describing polymer adsorption and depletion.
The density profile of polymers between two solid surfaces is evaluated and the interaction
free energy between the surfaces is calculated as a function of the separation distance. Both
for adsorbing and nonadsorbing polymers this interaction is attractive as long as the solution
between the surfaces is in full equilibrium with an external reservoir with constant composition.
The strength and range of the attraction depend on the chain length and polymer concentration.

The theoretical description of polymers at surfaces has focused mainly on monodisperse
polymers. Polydisperse chains have received only very little attention [13–15]. In this paper we
consider a special class of polymers, in which the bonds between monomers are not covalent,
but are based on reversible interactions. Such chains are called equilibrium polymers (or
‘living polymers’ or ‘supramolecular polymers’). Examples of equilibrium polymers are
wormlike micelles [16] and supramolecular polymers based on hydrogen bonding [17–19].
The difference with classical polymers is that the bonds between the segments can break
and recombine on experimental timescales. As a result, the chain length distribution in such
systems is not fixed but is determined by thermodynamic equilibrium and responds to variable
conditions. The equilibrium distribution can be calculated using statistical mechanics. Within
a mean-field approximation, an exponential chain length distribution is predicted [16, 20, 21]:

φ(N) = N
φM

〈N0〉2
exp

(
− N

〈N0〉
)

(1)

where φ(N) is the volume fraction of chains of N segments, φM is the total volume fraction
of monomers and 〈N0〉 is the number averaged chain length. The factor φM/〈N0〉2 normalizes
the distribution, ensuring

∑
N φ(N) = φM. The average chain length is a function of the

monomer concentration φM, the scission energy E that is needed to break a bond between two
monomers and the temperature T :

〈N0〉 � φ
1/2
M exp

(
E

2kT

)
(2)

where k is Boltzmann’s constant. This equation is valid for 〈N0〉 � 1. The properties of a
solution of equilibrium polymers can be ‘tuned’ by changing the monomer concentration or
the temperature, by influencing the scission energy E (for example, by changing the solvent
conditions) or by applying an external field such as a shear field.

Relatively little is known about the effect of equilibrium polymers on the interactions
between colloidal particles. Schmitt et al [22] presented an analytical model for a dilute
solution of ideal equilibrium polymer chains confined between two repulsive walls. Excluded
volume interactions were not accounted for in this approach. These authors considered both
the case where the solution in the gap is in full equilibrium with a reservoir, and a case
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of restricted equilibrium where the volume fraction of polymers in the gap and the volume
of the gap remain constant. In the former case, the interactions are attractive, while in the
latter case a repulsion was predicted. Milchev and Landau [23] did lattice Monte Carlo
simulations on concentrated solutions of equilibrium polymers confined between two surfaces.
Their results show that the surface region is preferentially occupied by short chains, which
is in agreement with the results for polydisperse systems of unbreakable polymers [14, 15].
Rouault and Milchev [24] used the same Monte Carlo algorithm to calculate the average chain
length in a concentrated equilibrium polymer solution in a gap between two surfaces as a
function of the gap size. In a recent paper [25] we applied a lattice theory for molecules with
orientation-dependent interactions, originally developed to describe the structure of water [26],
to a solution of equilibrium polymers at a single surface. In this model, correlations due to
interactions between monomers are accounted for in a Bethe–Guggenheim (or quasi-chemical)
approximation. Excluded volume interactions are accounted for by allowing only one molecule
on each lattice site. We calculated the thickness of the depletion layer as a function of the
polymer concentration and the scission energy. The depletion layer thickness passes through a
maximum as a function of the monomer concentration. In dilute solutions the depletion layer
thickness is proportional to the average radius of gyration of the chains, which increases with
concentration as 〈Rg〉 ∼ 〈N0〉1/2 ∼ φ

1/4
M within a mean-field approximation (see equation (2)).

Above the overlap concentration, the depletion layer thickness is proportional to the correlation
length ξ , which decreases with increasing concentration as ξ ∼ φ

−1/2
M within the mean-field

approximation (the so-called marginal regime). We also calculated the distribution of chain
lengths near the surface and found that the surface region is predominantly occupied by the
shorter chains.

In this paper, we extend these results to a solution of equilibrium polymers confined
between two flat surfaces. We calculate the average concentration in the gap and the average
length of the chains as a function of the separation distance between the surfaces. Furthermore
we calculate the interaction free energy between the surfaces. For describing the interactions
between two surfaces, the thermodynamic conditions under which the surfaces approach is
crucial. Clearly, this depends on the ratio of the timescale of the approach of the surfaces and
the timescale of the diffusion of polymers. Here, we consider both the case of full equilibrium
and that of restricted equilibrium. In the first case the solution in the gap is always in equilibrium
with a bulk solution, implying a constant chemical potential. This situation applies when the
approach between the two surfaces is sufficiently slow for equilibrium between the bulk and
the gap to be maintained. This is generally assumed to be relevant for describing depletion
interactions in colloidal dispersions where the collision time of particles due to Brownian
encounters is usually relatively large compared to the diffusion time of the polymers.

On the other hand, if the time needed for polymers to diffuse out of the gap is large
compared to the timescale of approach between the surfaces, then full equilibrium with the
bulk will not be maintained. This will be the case for a relatively fast compression of a narrow
gap between two plates of large surface area. In this case, the chemical potentials inside the
gap and in the bulk are no longer equal. A statistical thermodynamic treatment is still possible
if some additional assumptions are made about the polymer concentration in the gap and about
the redistribution of monomers in the overlap region of the two depletion layers. Here, we
will assume that diffusion of polymers from the gap to the bulk and vice versa is negligible.
Variations of the amount of polymer in the gap are determined only by the fluid flow out of
the gap when the surfaces are moved closer together and thus depend on the velocity profile
of the fluid flow. We furthermore assume that, for the given amount of polymer in the gap,
local equilibrium is maintained in the direction normal to the surfaces (i.e. the redistribution
of monomers in the normal direction is assumed to be very rapid). The concentration in
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the lateral direction remains homogeneous for this case. This situation applies when the
timescale on which the surface separation is varied is much larger than the time needed for
the polymers to diffuse over a distance comparable to the gap width, but much smaller than
the time needed for diffusion out of the gap. This is the case for narrow gaps between large
surfaces. Furthermore the variation of the surfaces should be slow compared to the kinetics of
breaking and recombination of bonds between monomers.

We note that diffusion may be faster for equilibrium polymers than for covalent polymers
of the same length, because the chains can break and recombine. Hence, full equilibrium may
be more easily obtained for equilibrium polymers than for ordinary polymers, which may be
advantageous in experiments [27].

The thermodynamics of interactions between two surfaces are described in section 2.1,
and in section 2.2 we describe the lattice model for calculating the concentration profile of
monomers in the gap and the interactions between the surfaces. The case of full equilibrium
between the gap and the bulk is considered in section 3. In section 4 we consider restricted
equilibrium. Two different approaches, based on two limiting cases for the fluid flow profile,
are described to calculate variations in the amount of polymer in the gap.

2. Theory

2.1. Interactions between two surfaces

We consider two solid plates of area A immersed in a solution of equilibrium polymers at
constant pressure p and temperature T . The total amount of molecules nA (where the subscript
A denotes either a monomer or a solvent molecule) is fixed for all components A. The Gibbs
free energy G of this system is given by

G({nA}p, T ) =
∑

A

ng
Aµ

g
A +

∑
A

nb
Aµb

A + 2γ A (3)

where µA is the chemical potential of component A, and γ is the surface tension at the inside
of the gap (which depends on the surface separation h). The superscript g denotes molecules
in the gap and the superscript b molecules in the bulk. Obviously, because the total amount of
monomers and solvent molecules in the system is fixed, we have nb

A + ng
A = nA. We assume

furthermore that the bulk is infinitely large so that transport of molecules from the gap to the
bulk or vice versa does not change the composition of the bulk. Hence, the chemical potentials
in the bulk and the concentration profiles at the outside of the gap are constant. Therefore also
the interfacial tension at the outer surfaces of the plates is constant and can be disregarded.

The quantity of interest is the free energy change per unit area when the plates are brought
from infinite separation towards a separation h:

�G(h) = G(h) − G(∞). (4)

If the system is in full thermodynamic equilibrium, the chemical potentials in the bulk and
in the gap are equal. In this case the sum of the first two terms in equation (3) is constant at
all separations h, so that the free energy of interaction is simply given by the change in the
interfacial free energy:

�Gfe(h) = 2A[γ (h) − γ (∞)] (5)

where the superscript fe stands for full equilibrium. As explained in the introduction, for this
situation to occur, the molecules in the gap should be able to diffuse out of the gap on the
timescale of variation of the distance between the two surfaces. If this is not the case, full
equilibrium between the gap and the bulk cannot be maintained and the chemical potential in
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Figure 1. A two-dimensional representation of a three-dimensional cubic lattice. At layers z = 0
and M + 1 there are solid surfaces. Layers 1 to M contain solvent molecules (open squares) or
bifunctional monomers (filled figures). The bonding groups of the monomers are represented as
curved edges.

the gap differs from that in the bulk. For that case also the first two terms in equation (3) must
be taken into account. The variation of the amount of molecules in the gap is now not (only)
determined by thermodynamics, but also by the flow of fluid out of the gap as the surfaces are
brought together (see section 4).

2.2. Bethe–Guggenheim lattice theory

In order to calculate the density profiles of monomers in the gap, we use a self-consistent-
field lattice theory for molecules with interactions that depend on their relative orientations.
The theory was developed by Besseling and Scheutjens to describe the structure of water and
hydration forces [26, 28, 29]. Recently, we applied it to a system of equilibrium polymers [25].
In this section we describe the general features of the model. A more detailed description can
be found in [26] and [25].

A schematic representation of the model is depicted in figure 1. The volume between
the two surfaces is divided into a number of identical lattice sites. Each site contains either
a solvent molecule or a bifunctional monomer. The lattice is divided into M parallel lattice
layers, numbered z = 1, 2, . . . , M . At layers z = 0 and M + 1 there is a solid surface. The
distance between the surfaces is h = Ml, where l is the lattice spacing. The number of sites in
each layer is denoted L and the area of the surfaces is A = aL with a the cross-sectional area
of a lattice site. The surface area, and hence L, are taken to be infinitely large, so that edge
effects can be ignored. The lattice coordination number q gives the number of neighbouring
sites that each lattice site has. As in [25], in this paper we use a cubic lattice, in which q = 6.
Four of these neighbouring sites are within the same lattice layer.

The surface of each molecule consists of q faces that are directed towards nearest-
neighbour sites. A bifunctional monomer has two different types of faces. Two of its q
faces are the bonding groups (in figure 1 represented as curved edges) and the remaining q − 2
faces are non-bonding faces. A monomer can have a number of different monomeric states.
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The state of a monomer is specified by the direction in which the two bonding groups are
pointing. In the present paper we consider only completely flexible chains. Hence, there is
no energy difference between linear states in which the two bonding groups are on opposite
sides of the monomer and bent states where the two bonding groups make a 90◦ angle. The
solvent molecules are isotropic, because all q faces of a solvent molecule are identical. Solvent
molecules therefore have no distinguishable states.

The number of molecules of type A having state σ that are located at layer z is denoted
nσ

A(z). Here the subscript A denotes either a monomer (M) or a solvent molecule (S). Every
lattice site is occupied by either a monomer or a solvent molecule, so that the following
constraint needs to be satisfied:∑

A

nA = nM + nS = M L (6)

where nA = ∑
σ,z nσ

A(z) is the total number of molecules of type A in the system. The
number of faces of type α in layer z, pointing in direction d , is denoted nd

α(z). Obviously,
the distribution of faces is directly related to the distribution of molecule states. The number
of contacts between faces of type α with direction d at sites in layer z and faces of type β

is denoted nd
αβ(z). One of these contact types (between two bonding groups) denotes the

formation of bonds between monomers. Obviously, the following relation should hold for the
distribution of contacts:∑

β

nd
αβ(z) = nd

α(z) (7)

for all α, z and d .
A Bethe–Guggenheim or quasi-chemical approximation is used to calculate the occupation

of the lattice sites. Correlations between neighbouring sites are accounted for in this approach,
but pairs of sites are occupied independently. Within this approximation, the distribution of
contacts between faces of type α and faces of type β depends on the contact energy uαβ between
these faces. The following equation has been derived for the contact distribution [26]:

φd
αβ(z) = φd

α(z)φ−d
β (z + d)

Gd
α(z)G−d

β (z + d)
exp

(
−uαβ

kT

)
. (8)

Here φd
α(z) ≡ nd

α(z)/L and φd
αβ(z) ≡ nd

αβ(z)/L are the site fractions of faces and contacts. The
direction indicated −d is the opposite of d , and z + d denotes the layer at which d is directing
from layer z (here d can have the values −1, 0 or 1). The factors Gd

α(z) and G−d
β (z +d) are face

weighting factors, accounting for the saturation of faces. They are determined by constraint (7).
From equation (8) we see that low-energy contacts are favoured over high-energy ones. This is
different from the Bragg–Williams or random-mixing approximation, for which the occupancy
of nearest-neighbour sites is stochastically independent: φd∗

αβ(z) = φd
α(z)φ−d

β (z + d) (here the
asterisk denotes a random distribution of contacts).

A bond between two monomers is formed if two bonding groups point towards each other.
The strength of such a bond is determined by the contact energy −E between two bonding
groups. If E is large, bonds are very favourable and long chains will be formed. Here, we take
the contact energies between other combinations of faces (of monomers and solvent) equal
to zero. Hence, uαβ = −E if α and β are both bonding groups and uαβ = 0 otherwise.
All interaction energies with the surface are set to zero as well, so there is no preferential
interaction of either monomers or solvent with the surface.

For the distribution of molecules over the lattice layers the following equation has been
derived [26]:

φσ
A(z) = ΛAGσ

A(z) (9)
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where φσ
A(z) ≡ nσ

A(z)/L is the fraction of sites in layer z occupied by molecules of type A
in state σ , and where ΛA = exp(µA/kT ) is a normalization constant, with µA the chemical
potential of component A. Summation over all states σ and layers z yields the following
expression for ΛA:

ΛA = θA∑
σ,z Gσ

A(z)
(10)

where θA is the amount of molecules of type A expressed in equivalent lattice layers:
θA = ∑

z φA(z) with φA(z) = ∑
σ φσ

A(z) the volume fraction of monomers in layer z.
Equation (10) makes it possible to normalize any component A by either fixing the chemical
potential µA (full equilibrium conditions) or by fixing θA (restricted equilibrium).

The weighting factor Gσ
A(z) in equation (9) measures the probability of finding a molecule

of type A in state σ in layer z. It can be factorized as

Gσ
A(z) = C

∏
α,d

Gd
α(z)qσd

Aα (11)

where qσd
Aα equals 1 if the face pointing in direction d of a molecule A having state σ is of type

α and zero otherwise. Each face of molecule A contributes a factor Gd
α(z) to Gσ

A(z). The factor
C is a consequence of constraint (6). It can be shown that C = 1 in homogeneous systems,
while for heterogeneous systems C is related to the interfacial tension γ [26]:

2γ a

kT
= M ln C. (12)

The distribution of contacts and monomer states is completely determined by the self-
consistent equations (8), (9) and the constraints (6) and (7). These equations can be solved
numerically, as described in [26]. The distribution of chain lengths can then be calculated using
the method described in [25]. The number average chain length can be calculated directly as

〈N〉 = θM
1
2

∑
z φe(z)

(13)

where θM = ∑
z φM(z) is the total number of monomers between the plates and where φe(z)

denotes the number of end segments in layer z, i.e. the number of bonding groups in layer z
that are not linked to another bonding group. The excess amount of monomers in the gap as
compared to the bulk solution, expressed in equivalent lattice layers, is defined as

θ ex =
M∑

z=1

(φM(z) − φb
M) (14)

where φb
M is the bulk volume fraction of monomers. If depletion occurs, θ ex is negative. At

infinite separation between the surfaces we may use θ ex to obtain a measure for the depletion
layer thickness at a single surface:

�1 = θ ex(∞)

2φb
M

(15)

where the factor 2 accounts for the two surfaces.

3. Full equilibrium

In this section we consider a film containing equilibrium polymers and solvent between two
surfaces in full equilibrium with the bulk of the solution. The equilibrium polymers do not
adsorb on the surface. Hence, depletion layers will be formed near the two surfaces. The
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Figure 2. Depletion of equilibrium polymers between two plates. Schematic concentration profiles
inside and outside the gap for large separations h � �1 (a) and for small separations h < �1 (b).
The full curves refer to the case of full equilibrium with the bulk of the solution and the broken
curves to restricted equilibrium with the bulk (see section 4).

-10

-5

0

0 10 20 30 4 0

θ
M

ex

0.01

0.001

φ
M

b

M

φ
M

b=0.1

Figure 3. The excess amount of polymer between two plates immersed in a solution of flexible
living polymers (E = 15kT ) as a function of the separation distance for three different φb

M. Full
curves: full equilibrium, dotted curves: restricted equilibrium with no-slip conditions, M ′ = 50
(see section 4.2).

principle of depletion is illustrated in figure 2. Schematic concentration profiles of monomers
at the inside and outside of the gap are shown for wide and narrow gaps (the full curves
refer to full equilibrium). Near the two surfaces there are depletion zones (with a thickness
�1) where the segment concentration is lower than in the bulk of the solution. This is due
to conformational restrictions that are, for nonadsorbing polymers, not compensated by an
adsorption energy.

The excess amount of polymer θ ex between the two surfaces is shown in figure 3 as a
function of the separation distance M for monomers with a scission energy E = 15kT for three
different bulk concentrations. The full curves refer to the case of full equilibrium between the
gap and the bulk. Figure 4 shows the average monomer concentration 〈φM〉 = ∑

z φM(z)/M
in the gap for the same parameters. Obviously, the excess amount is negative for the present
case of nonadsorbing polymers and 〈φM〉/φb

M < 1. At large separations M � �1, when the
depletion layers at the two surfaces do not overlap (figure 2(a)), θ ex is constant and equal to
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Figure 4. The average volume fraction of monomers in the gap as a function of the separation
distance for E = 15kT and three different φb

M. Full curves: full equilibrium, dotted curves:
restricted equilibrium with no-slip conditions, M ′ = 50 (see section 4.2).
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∆
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E=10 kT

∆
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Figure 5. The depletion layer thickness at a single surface �1 = θ ex(∞)/2φb
M (dotted curves) and

the range of the depletion interaction between two surfaces at full equilibrium � (full curves, see
also figure 7) as a function of φb

M for several E .

twice the depleted amount at a single surface. The average volume fraction in this regime
varies as (〈φM〉 − φb

M) ∼ M−1. The depletion layer thickness �1 (equation (15)) is shown
in figure 5 as a function of the monomer concentration for three values of E (the broken
curves). As discussed in detail in a previous paper [25], there are two regimes for �1. At low
concentrations it is proportional to the average radius of gyration 〈Rg〉 of the chains, while
above the overlap concentration it corresponds to the correlation length ξ of the solution (the
mesh size of the network). Hence

�1 ∼

 〈Rg〉 ∼ 〈N0〉1/2 ∼ (φb

M)1/4 exp

(
E

4kT

)
for φb

M < φ∗
M

ξ ∼ (φb
M)−1/2 for φb

M > φ∗
M

(16)

where the last proportionality for φb
M > φ∗

M is the mean-field scaling in the marginal regime
[6, 12]. The crossover concentration between the dilute and marginal regimes is denoted as
φ∗

M. It varies with the bonding energy as φ∗
M ∼ exp(−E/3kT ) (which is found by equating
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0

0.5

1

0 10 20 30 4 0

<N>

0.1
0.001

<N
0
>

M

φ
M

b=0.01

Figure 6. The average chain length (normalized with respect to that in the bulk) as a function of
the separation distance for E = 15kT and for three different φb

M. Full curves: full equilibrium,
broken curves: restricted equilibrium with perfect-slip conditions (constant 〈φM〉, see section 4.1),
dotted curves: restricted equilibrium with no-slip conditions (see section 4.2). At M ′ = 50 the
curves of full and restricted equilibrium coincide.

〈Rg〉 and ξ ). At intermediate concentrations, around φ∗
M, �1 passes through a maximum.

The non-monotonic behaviour of �1 can also be seen in figure 3. Note that, for very low
concentrations and not very large E , the depletion layer thickness decreases faster with
decreasing concentration than predicted by equation (16), because the chains become very
short in this case. Also at very high concentrations, deviations from equation (16) are observed.
This is due to a crossover from the marginal to the concentrated regime, where higher-order
interactions become important [6, 12]. Obviously, in a melt (φb

M = 1), �1 = 0.
Upon decreasing the surface separation, the average monomer concentration in the gap

decreases monotonically, because it becomes more unfavourable for polymers to be inside the
gap, see figure 4. At very small separations (M � �1) the polymer concentration in the gap
vanishes (φM(z) ≈ 0 for any z), as can be seen in figure 4. It follows from equation (14)
that θ ex = −Mφb

M in this regime, so that the excess amount varies linearly with M . At
intermediate separations, θ ex passes through a minimum at sufficiently high concentrations
(e.g. the curve for φb

M = 0.1 in figure 3). This minimum has been observed before for
monodisperse homopolymers [7, 8, 30]. As discussed in detail in a recent paper, the origin
of this minimum is the ordering of individual polymer coils in layers near the surface [30].
For equilibrium polymers the minimum is weaker than for monodisperse polymers, because
polydispersity smears out the packing of the polymer coils.

Our results for the dilute regime (φb
M � φ∗

M) may be compared to those of Schmitt et al
[22], who derived an analytical expression for 〈φM〉 for this regime (based on a continuum
model for ideal Gaussian chains). Their expression depends only on the ratio h/〈Rg〉, with
h the surface separation and 〈Rg〉 the unperturbed radius of gyration of a chain with a length
equal to the average length in the bulk. For chains on a cubic lattice without backfolding,
〈Rg〉 = 1

2 l〈N0〉1/2 (with l the lattice spacing) [31]. In order to compare with the continuum
model, the surfaces must be located in the middle of layers 0 and M + 1 (see figure 1). Hence,
we take h = (M +1)l for the surface separation and 〈φM〉 = ∑

z φM(z)/(M +1) for the average
volume fraction. In this way, we obtain nearly quantitative agreement with Schmitt’s results.
Small differences between our numerical model and the analytical results of Schmitt et al are
due to small chains that cannot be described by the continuum model and to subtle differences
in the boundary conditions in the two models [32].
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Figure 7. The free energy of interaction between two plates immersed in a solution of living
polymers for E = 15kT and several values of φb

M. Full curves: full equilibrium, broken curves:
restricted equilibrium with perfect-slip conditions (constant 〈φM〉, see section 4.1), dotted curves:
restricted equilibrium with no-slip conditions (see section 4.2). M ′ = 50.

The effect of confinement on the average length of the chains is shown in figure 6. Here
〈N〉 (divided by the average length in the bulk 〈N0〉) is shown as a function of the gap size M
for E = 15kT and for several values of φb

M (full curves denote full equilibrium). Clearly, the
average chain length inside the gap decreases strongly with decreasing gap width: because the
longest chains suffer most from conformational restrictions, they are excluded from the gap
first. This effect is strongest for the concentration where the depletion layer thickness has a
maximum (around φb

M = 0.01 for E = 15kT ). Again, for dilute solutions our results are in
excellent agreement with the results of Schmitt et al [22].

The interaction free energy between the two surfaces, given by equation (5), is shown in
figure 7 for E = 15kT and several bulk concentrations of monomers (full curves again denote
full equilibrium). At large separations, when the depletion layers of the two surfaces do not
overlap, �G = 0. The volume fraction of monomers in the middle of the gap is equal to
that in the bulk in this case (see figure 2(a)), so that the osmotic pressure inside and outside
are equal. As the depletion layers begin to overlap, the surfaces start to attract each other,
because the osmotic pressure in the gap becomes lower than that in the bulk (the concentration
in the middle of the gap is now lower than φb

M, see figure 2(b)). As a result, the plates are
pushed together. For very dilute solutions, our results are again in very good agreement with
the analytical results of Schmitt et al [22]1.

At short distances, the interaction free energy varies linearly with M . At these separations
the polymer concentration (figure 4), and as a result also the osmotic pressure in the gap,
vanishes. The effective pressure pushing the plates together (giving the slope of the curves in
figure 7) is then equal to the outside osmotic pressure. This can also be seen as follows: if
there are no monomers in the gap (i.e. θM = 0 and θS = M), the only contacts in the gap are
between the faces of solvent molecules. From equation (8) it follows that the face weighting
factor Gd

α(z) is then equal to unity for solvent faces for all z and d . From equation (11)
it follows that GS(z) = C in this case and equation (10) then gives C = 	−1

S . Hence, the
interfacial tension (equation (12)) is given by 2γ a = kT M ln C = −MµS. Since the chemical

1 Schmitt et al give an expression for the disjoining pressure, p = −∂(�G)/∂h. This expression was compared to
our results after numerically differentiating our �G .
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Figure 8. The interaction free energy between the surfaces at zero separation as a function
of the bulk concentration for monomers with two different E . Full curves: full equilibrium
(depletion attraction), broken curves: restricted equilibrium with perfect-slip conditions (repulsion,
see section 4.1), dotted curves: restricted equilibrium with no-slip conditions (repulsion, see
section 4.2).

potential of the solvent µS is constant under full equilibrium conditions, the interfacial tension,
and also the interaction free energy (equation (5)), vary linearly with M . The slope is −µS,
which is equal to �vS according to standard thermodynamics with � the osmotic pressure and
vS the molecular volume of a solvent molecule (in the present model equal to the volume of
one lattice site). Indeed, the slope of the interaction curves is given by the osmotic pressure.
At zero separation (M = 0) the contribution of the polymers to the interfacial tension is zero
(energetic interactions due to direct contact of the surfaces are not considered here). The range
of the interaction 2� can be obtained by extrapolation of the linear section in �G versus M
to the abscissa (see figure 7). This is a measure for the gap width where, upon decreasing M ,
all the polymer is squeezed out of the gap. With this definition for � we can write for the
interaction free energy at short distances (M < 2�)

�G(M) = L�vS(M − 2�). (17)

The range and strength of the interaction depend strongly on the monomer concentration.
In figure 5 the range of the interaction � is shown as a function of the bulk monomer
concentration for several values of E (the full curves). Clearly, the range of the attraction
follows the same trend as the depletion layer at a single surface �1. The same scaling regimes
are found for � (equation (16)). The maximum in � occurs at slightly higher φb

M than that
in �1.

The depth of the free energy well at zero separation follows from equation (17):
�G(0) = −2Aγ (∞) = −2L�vS�. We do not consider energetic contributions due to
direct contact of the surfaces. The osmotic pressure � increases with concentration, while the
range of the attraction � passes through a maximum and then decreases. As shown in figure 8,
−�G(0), which is proportional to the product ��, increases monotonically with increasing
concentration. Hence, the increase of � is stronger than the decrease of � above the overlap
concentration.

For the osmotic pressure of a solution of equilibrium polymers in an athermal solvent,
the following expression can be derived within the Bethe–Guggenheim approximation for
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E � kT (see the appendix):

�vS

kT
= q

(q − 2φb
M)

φb
M

〈N0〉 − ln(1 − φb
M) +

q

2
ln

(
1 − 2φb

M

q

)

≈ φb
M

〈N0〉 +

(
1

2
− 1

q

)
(φb

M)2 +

(
1

3
− 4

3q2

)
(φb

M)3 + · · · . (18)

This equation is similar to the Flory–Huggins expression for the osmotic pressure of
polydisperse polymer solutions [20] with corrections that arise from the correlations
between the occupation of neighbouring sites. For dilute solutions (φb

M � 1/〈N0〉)
equation (18) reduces to Van’t Hoff’s law for ideal solutions: �vS/kT ≈ φb

M/〈N0〉 =
(φb

M)1/2 exp(−E/2kT ) (with φb
M/〈N0〉 the number concentration of chains). Above the overlap

concentration, in the marginal regime (1/〈N0〉 � φb
M � 1), �vS/kT ∼ (φb

M)2. Combining
this with equation (16) we find

−�G(0) ∼

 (φb

M)3/4 exp

( −E

4kT

)
for φb

M < φ∗
M

(φb
M)3/2 for φb

M > φ∗
M.

(19)

The depth of the interaction well increases monotonically with increasing concentration. In
dilute solutions it becomes weaker if the bonding energy increases, while above the overlap
concentration it is independent of the bonding energy. The scaling regimes with concentration
are indicated in figure 8. For very low concentrations and relatively small bonding energies
the chains are very short and there is hardly any depletion. In this case the attraction
decreases faster with decreasing concentration than predicted by equation (19). Also at very
high concentrations deviations occur from equation (19) because higher-order terms in the
expansion of equation (18) become important, and also the correlation length decreases faster
with concentration in the concentrated regime (see figure 5).

We note that in [25] we introduced an alternative measure for the depletion layer thickness,
based on the shape of the volume fraction profile at a single surface. At large z, the volume
fraction approaches the bulk value exponentially: φb

M − φM(z) ∼ exp(−z/∆2). It was shown
that the decay length ∆2 may be used as an alternative measure for the depletion layer thickness,
which behaves in qualitatively the same manner as � and �1. Similarly, the interaction
free energy �G(M) between two surfaces decays exponentially to zero at large separations:
−�G(M) ∼ exp(−M/∆2). The decay length is the same as that of the concentration profile
at a single surface.

4. Restricted equilibrium

In the previous section we have discussed depletion interactions under conditions of full
equilibrium between the interior of the gap between the surfaces and a bulk solution. For
this situation to occur, the molecules in the gap should be able to diffuse out of the gap on
the timescale of the variation of the distance between the two surfaces. For a relatively fast
approach of two surfaces of large area this is not likely to be the case, especially at small
separations. Full equilibrium between the gap and the bulk cannot be maintained for such
cases and the chemical potential in the gap differs from that in the bulk. In order to be able
to describe this situation, we need to make assumptions about the amount of polymer in the
gap. Here we assume that, for separations M < M ′, the amount of polymer in the gap varies
only because of the fluid flow induced by the movement of the surfaces (here M ′ may be
considered as the starting point of the compression of the gap; for M � M ′ full equilibrium
is maintained). Diffusion of polymer from the gap to the bulk and vice versa is completely
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Figure 9. Schematic representation of two different cases of restricted equilibrium. The two
surfaces approach each other with a velocity v0. (a) Perfect-slip conditions, corresponding to a
fluid velocity vr independent of z. (b) No-slip conditions, corresponding to a parabolic velocity
profile vr . In both cases, the concentration profile in the normal direction φM(z) (left) is always at
a local equilibrium.

neglected for M < M ′. The monomer concentration in the gap is then completely determined
by the flow profile of the fluid that is squeezed out of the gap upon the approach of the surfaces
(see figure 9). We assume furthermore that local equilibrium is maintained in the direction
normal to the surfaces. These assumptions are reasonable for a narrow gap between two large
surfaces, for which the distance over which the polymers have to diffuse is much larger in the
lateral direction than in the normal direction.

In order to calculate the amount of monomers in the gap at every separation, we need to
make an assumption about the velocity profile of the fluid flow out of the gap as the surfaces
are brought closer together. This profile depends on the slip conditions at the wall. Two
limiting cases will be considered. In section 4.1 we consider the case of perfect slip at the
walls. This corresponds to a radial velocity which is independent of the distance to the surfaces
(figure 9(a)). In section 4.2 we consider the case of no slip at the walls. This corresponds
to a parabolic velocity profile in the direction parallel to the surfaces (figure 9(b)). In reality
the flow profile lies probably in between these two limiting cases. In the depletion zones near
the two surfaces the viscosity is lower than in the middle of the gap due to the lower polymer
concentration. This results in a higher shear rate in the depletion zones. This effect becomes
larger if the polymer concentration becomes higher, because the difference in viscosity is
larger then. Hence, we may expect that with increasing concentration we go from no-slip to
perfect-slip conditions.

4.1. Perfect slip: constant average monomer concentration

The simplest approach is to assume that perfect slip occurs at the walls, i.e. all the shear occurs
at the walls. This results in a fluid velocity in the direction parallel to the surfaces which is
independent of the distance to the surfaces (a block profile, see figure 9(a)). The solution that
flows out of the gap in this case has a polymer concentration equal to the average concentration
in the gap. The average concentration in the gap 〈φM〉 then remains constant for all separations
M < M ′. At the starting point M = M ′ the gap is in full equilibrium with the bulk, so that
〈φM〉 is related to the bulk concentration by 〈φM〉 = φb

M + θ ex
fe (M ′)/M ′ (see equation (14)),

where θ ex
fe (M ′) is the excess amount of monomers at a separation M ′ under full equilibrium

conditions. Since θ ex
fe (M ′) is negative for the present case of nonadsorbing polymers
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(see figure 3), 〈φM〉 < φb
M. Here we take M ′ arbitrarily equal to 50 lattice layers. The

amount of monomers in the gap for M < M ′ varies as θM = M〈φM〉. The chemical potential,
which is no longer constant, can be found from equation (10). (For details about the calculation
method, see [26].)

The broken curves in figure 6 show the variation of the average length of the chains with
surface separation for this situation for three values of φb

M. As a result of the fixed monomer
concentration the average length varies only very little with decreasing M . At M = M ′ = 50,
where the gap is in full equilibrium with the bulk, the average length is slightly smaller
than that in the bulk. As the surface separation decreases, the average length first increases
slightly. At intermediate distance it passes through a (weak) maximum, and at very small
separations the average length decreases somewhat upon decreasing M . The initial increase
of 〈N〉 with decreasing M is a result of the concentration profile (see figure 2(a)): as a result
of the depletion layers near the surfaces, the monomer concentration in the middle of the
gap increases as M becomes smaller (in order to keep the average monomer concentration
in the gap constant). Since the average length depends on the concentration (equation (2)),
this elevation of the local concentration causes a slight increase of the average length. At very
small separations the chain length decreases again, because of conformational restrictions. The
conformational entropy of a bond between two monomers in a narrow gap is smaller than that in
a homogeneous system, because the surfaces exclude some directions for bond formation. This
may be considered as an effective decrease of the bonding free energy as compared to chains
in a homogeneous solution. In a slit of one lattice layer on a cubic lattice there are only three
possible directions for every next bond rather than five in the bulk (two directions are excluded
by the presence of the surfaces). Hence, the conformational entropy of a bond is reduced by
an amount k ln(5/3) and the (absolute value of the) effective bonding free energy is smaller
by an amount kT ln(5/3). From equation (2) we see that the average length in a slit of one
layer is then smaller by a factor of

√
5/3 compared to a homogeneous 3D system of the same

monomer concentration.
The broken curves in figure 7 represent the interaction free energy between the two surfaces

for a constant average monomer concentration for E = 15kT and several φb
M. It is clear that

the equilibrium polymers trapped between the two surfaces in the gap cause repulsion between
the surfaces. This was also found by Schmitt et al [22] for ideal equilibrium polymers without
excluded volume interactions. The interaction free energy extrapolated to zero separation is
shown in figure 8 (broken curves). With increasing monomer concentration the repulsion
becomes stronger. For not too high concentrations �G(0) increases proportionally to φb

M.
Results are presented only for E = 15kT . For other values of E , the strength of the repulsion
is nearly the same. Hence, �G(0) depends only weakly on the bonding energy E .

The repulsion is a result of the decrease of conformational entropy of the confined chains.
As explained above, the conformational entropy of a bond in a gap of one lattice layer is lower
by an amount k ln(5/3) as compared to that of a bond in the bulk. For high enough bonding
energy and monomer concentration (when the average length is much larger than unity) almost
all bonding groups of the monomers are linked to another bonding group. Hence, the number
of bonds is almost equal to the number of monomers. It follows that the total difference in
conformational entropy per lattice site between monomers confined in a slit of one lattice layer
and monomers in the bulk is approximately equal to �Sc/L ≈ −kφb

M ln(5/3) (where we have
neglected the difference between 〈φM〉 and φb

M and the effect of confinement on the chain
length distribution). This may be used as an estimate for the strength of the interaction at zero
separation: �G(0) ≈ −T�Sc ≈ kT Lφb

M ln(5/3). Indeed, it increases proportionally to φb
M

and does not depend on E . For high concentrations, deviations from this scaling are seen, and
also for small E and very low φb

M (when 〈N0〉 is of the order of unity) the interaction is weaker.
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4.2. No slip: outflow with parabolic velocity profile

In the previous section we assumed perfect slip at the walls, which results in a radial velocity
which is independent of the z coordinate (figure 9(a)) and in an average volume fraction in the
gap that remains constant upon compression of the gap. If there is no perfect slip at the walls,
however, the radial velocity will be higher in the middle of the gap than close to the walls
(figure 9(b)). Because the monomer concentration is also highest in the middle of the gap, the
average concentration of the solution that flows out of the gap will be higher than the average
concentration in the gap. Here, we consider the other limiting case, when there is no slip at
the walls (the velocity in the parallel direction is then zero at the two surfaces). For simplicity,
we consider two parallel circular plates of radius R (and area A = π R2). We begin with the
surfaces far apart (M = M ′ or h = h′). When the plates are brought closer together, fluid is
squeezed out of the gap. For a narrow gap between two large plates (R � h) and for small
velocities the velocity profile of the fluid flow has been calculated by Reynolds [33]. In the
radial direction, parallel to the surfaces, the velocity is

vr(r, ẑ) = 3r ẑ[h − ẑ]v0

h3
(20)

and in the normal direction, perpendicular to the surfaces:

vz(r, ẑ) = 6
[
ẑ2

(
ẑ
3 − h

2

)
+ h3

12

]
v0

h3
. (21)

Here r is the distance from the centre of the gap in the direction parallel to the surfaces and
ẑ is the distance in the normal direction from the lower surface. Expressed in terms of the
lattice model, ẑ = l(z − 1

2 ) with l the lattice spacing (see figure 1). The velocity at which the
plates approach each other is v0 = dh/dt . At the walls (ẑ = 0 and h), the velocity in the radial
direction vr equals zero, while the normal velocity vz is equal to ±v0/2 (the normal velocity is
measured relative to the position of the middle of the gap). In the middle of the gap (ẑ = h/2),
the radial velocity has a maximum (which depends on the radial coordinate r ) and the normal
velocity is zero. Because the normal velocity does not depend on the r coordinate, and because
there is no concentration gradient in the r direction at the beginning, the concentration in the
lateral direction remains homogeneous. The amount of molecules of type A that flow out of
the gap at the edge (r = R) in a time dt (corresponding to a change in separation dh) is then

dng
A = −2π R dt

∫ h(t)

0
vr(R, ẑ)φA(z) dẑ (22)

where φA(z) is the volume fraction of component A at coordinate z. The corresponding change
in the average volume fraction is d〈φg

A〉 = dng
A/(π R2h). We assume that at every separation

distance h the volume fraction profile φA(z) maintains a local equilibrium.
We start again at a separation M ′ equal to 50 lattice layers (h = M ′l = 50l), for which

the profile is in full equilibrium with the bulk. Then we decrease the separation by one lattice
layer (dh = l) and calculate the new amount of polymer using equations (20) and (22). The
concentration profile in the normal direction is allowed to reach a new local equilibrium for the
given amount of polymer and then h is reduced again by one layer, and so on. This procedure
resembles a typical experiment with a surface force apparatus.

The dotted curves in figure 4 show the resulting average volume fraction in the gap
as a function of the separation distance for E = 15kT and several φb

M. In figure 3 the
corresponding excess amount is shown (dotted curves). For M > M ′ = 50, the curves of
restricted equilibrium and full equilibrium coincide, by definition. Because the flow velocity
is largest where the monomer concentration is highest, the fluid that leaves the gap has a
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monomer concentration that is higher than the average concentration in the gap. As a result, the
average concentration in the gap decreases with decreasing surface separation. The monomer
concentration in the gap is higher than the equilibrium value (full curves), however, and the
excess amount in the gap changes more smoothly than for full equilibrium.

The average length of the chains for restricted equilibrium with a parabolic flow profile
is shown in figure 6 (the dotted curves). The average length decreases monotonically with
decreasing surface separation. This decrease is faster than for a constant average volume
fraction (the broken curves), but slower than for full equilibrium conditions (the full curves).
This trend follows the variation of the average monomer concentration in the gap: the lower
〈φM〉, the smaller the average length.

The interaction between the two surfaces is also shown in figure 7 (the dotted curves).
The interaction is again repulsive, but this repulsion is weaker than for the case of a constant
average volume fraction in the gap, because the polymer concentration in the gap is closer to the
equilibrium value (see figure 4). The repulsion becomes stronger for increasing concentration,
as shown in figure 8 (the dotted curves). Again, the effect of the bonding energy on �G(0) is
very weak.

Under restricted equilibrium conditions, one generally encounters hysteresis effects. The
force measured upon a decrease of the separation h (compression of the gap) differs from the
force measured upon an increase of h (expansion of the gap). The reason for this hysteresis is
that the composition of the fluid flow out of the gap upon a decrease of h is different from that
of the flow into the gap when h increases. The latter will have a composition which is more
or less equal to the bulk composition. Since the fluid flows into the gap only at the edge of the
gap, the local concentration at the edge may become different than that in the middle of the gap.
Because of this complication, we will not consider the interaction upon an increase of h here.

5. Concluding remarks

In this paper we have considered equilibrium polymers confined between two surfaces. The
average concentration in the gap, the average length of the chains and the interaction between
the surfaces were considered. When the gap is in full equilibrium with the bulk of the solution,
the equilibrium polymers cause depletion attraction. The range of this attraction, which is
related to the depletion layer thickness at a single surface, passes through a maximum as a
function of concentration. In dilute solutions it corresponds to the average radius of gyration
of the chains, which increases with concentration, while above the overlap concentration it
corresponds to the correlation length, which decreases with concentration. The strength of the
attraction increases monotonically with concentration.

When the diffusion of polymers between the gap and the bulk is too slow to maintain full
equilibrium, the situation changes. The amount of polymer in the gap is no longer determined
by thermodynamic equilibrium with the bulk, but by the flow of fluid out of the gap upon
compression of the gap. Two limiting cases were considered: that of perfect slip at the walls
and that of no slip at the walls. In both cases, the interaction between the surfaces becomes
repulsive.

Schmitt et al [22] and Rouault and Milchev [24] used a different boundary condition for
restricted equilibrium. They assumed that both the average volume fraction in the gap and
the total volume of the gap remain constant. Hence, as the surfaces move closer together
(h decreases), the area of the surfaces increases proportionally, such as to keep V = Ah
constant. This situation may be relevant for the spreading of a thin film deposited on a solid
substrate. The average length of the chains in the gap for this case is the same as the broken
curves in figure 6. In the calculation of the interaction free energy, however, the change of
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the area A in equation (3) should be taken into account and the bulk terms must be omitted.
Lattice calculations for this case (not shown) indicate that this leads to a repulsion very similar
to those shown in figure 5 for constant 〈φM〉 and A.

Experimental evidence for interactions between surfaces in the presence of equilibrium
polymers is scarce. Kékicheff et al [27] measured depletion interactions between two mica
surfaces in semi-dilute solutions of wormlike micelles of CTAB. They measured an attraction
with a range that decreased with concentration as � ∼ φ−0.65. The exponent is somewhat
larger than the mean-field exponent 1/2 and somewhat smaller than the semi-dilute exponent
3/4. No measurements in the dilute regime have been reported. Interactions under restricted
equilibrium can be measured by decreasing the timescale of the experiment (reducing the
waiting time in a surface force apparatus or increasing the drive frequency in an atomic force
microscope).

Appendix. Osmotic pressure of a solution of equilibrium polymers

From standard thermodynamics, we know that the osmotic pressure of a solution is related to
the chemical potential of the solvent: �vS = −µS. The chemical potential in its turn is related
to the monomer concentration and the weighting factor GS by equation (9). Hence

�vS

kT
= − µS

kT
= − ln(1 − φM) − ln(GS). (A.1)

The weighting factor of a solvent molecule is related to the face weighting factor by
equation (11): GS = (Gd

0)
q , where the subscript 0 denotes a face of a solvent molecule.

Similarly, we denote the bonding groups of the monomers as faces of type 2 and the q − 2
remaining faces of the monomers as faces of type 1. The face weighting factors Gd

α follow
from equations (7) and (8). In a homogeneous isotropic solution (all site fractions are the same
for all layers z and directions d) this gives

φd
0 = (φd

0 )2

(Gd
0)

2
+
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1

Gd
0 Gd

1

+
φd

0 φd
2

Gd
0 Gd

2

(A.2)

φd
1 = φd

1 φd
0

Gd
1 Gd

0

+
(φd

1 )2

(Gd
1)

2
+

φd
1 φd

2

Gd
1 Gd

2

(A.3)

φd
2 = φd

2 φd
0

Gd
2 Gd

0

+
φd

2 φd
1

Gd
2 Gd

1

+
(φd

2 )2
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where we have used φd
α = φ−d

α and Gd
α = G−d

α . The site fractions of faces φd
α are related to

the concentration of monomers:

φd
0 = 1 − φM (A.5)

φd
1 = (q − 2)φM

q
(A.6)

φd
2 = qφM

2
. (A.7)

Equations (A.2)–(A.7) can be solved exactly for Gd
0 , Gd

1 and Gd
2 as a function of φM and E .

With equation (2) we obtain Gd
0 as a function of φM and 〈N0〉. The full expression is too long

to display here, but for E � kT it reduces to

Gd
0 ≈

√
1 − 2φM

q
+

φM

〈N0〉
√

q2 − 2φMq
. (A.8)
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Equation (11) then gives the monomer weighting factor GS, which can be substituted in
equation (A.1) to yield an expression for the osmotic pressure as a function of φM and 〈N0〉.
Expanding in terms of φM/〈N0〉 and neglecting second- and higher-order terms then gives
equation (18).
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